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ABSTRACT
Performance modeling of extreme-scale applications on ac-
curate representations of potential architectures is critical
for designing next generation supercomputing systems be-
cause it is impractical to construct prototype systems at
scale with new network hardware in order to explore de-
signs and policies. However, these simulations often rely on
static application traces that can be difficult to work with
because of their size and lack of flexibility to extend or scale
up without rerunning the original application. To address
this problem, we have created a new technique for gener-
ating scalable, flexible workloads from real applications, we
have implemented a prototype, called Durango, that com-
bines a proven analytical performance modeling language,
Aspen, with the massively parallel HPC network modeling
capabilities of the CODES framework.

Our models are compact, parameterized and representa-
tive of real applications with computation events. They are
not resource intensive to create and are portable across sim-
ulator environments. We demonstrate the utility of Durango
by simulating the LULESH application in the CODES sim-
ulation environment on several topologies and show that
Durango is practical to use for simulation without loss of
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fidelity, as quantified by simulation metrics. During our
validation of Durango’s generated communication model of
LULESH, we found that the original LULESH miniapp code
had a latent bug where the MPI_Waitall operation was used
incorrectly. This finding underscores the potential need for
a tool such as Durango, beyond its benefits for flexible work-
load generation and modeling.

Additionally, we demonstrate the efficacy of Durango’s di-
rect integration approach, which links Aspen into CODES as
part of the running network simulation model. Here, Aspen
generates the application-level computation timing events,
which in turn drive the start of a network communication
phase. Results show that Durango’s performance scales well
when executing both torus and dragonfly network models
on up to 4K Blue Gene/Q nodes using 32K MPI ranks, Du-
rango also avoids the overheads and complexities associated
with extreme-scale trace files.

CCS Concepts
•Networks → Network simulations; •Computer sys-
tems organization → Parallel architectures; Multi-
core architectures;

Keywords
Massively Parallel Simulation, HPC Networks Models, Struc-
tural Analytic Models

1. INTRODUCTION
Performance modeling of extreme-scale applications using

accurate representations of potential architectures is criti-
cal for designing next generation supercomputing systems
because it is impractical to construct prototype systems at
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scale with new network hardware in order to explore designs
and policies. However, simulations often rely on static ap-
plication traces that can be difficult to work with because of
their size and lack of flexibility to extend or scale up without
rerunning the original application. For example, the applica-
tion traces available as part of the Design Forward program
(see: http://www.exascaleinitiative.org/design-forward) can
be hundreds of gigabytes. Moreover, once traces are created,
they are fixed and cannot be changed Also, traces require a
system and time where the trace can be created.

On the other hand, well-known patterns [10] coded in a
simulator-specific language also have shortcomings. First,
these patterns typically are synthetic and not often repre-
sentative of real application behaviors, thus driving the need
for real application traces. Second, these patterns often do
not include any computation for the processors, so there is
limited ability to inject realistic processor behaviors between
communication events.

To address this problem, we have created a new tech-
nique for generating scalable workloads from real applica-
tions, and we have implemented a prototype, named Du-
rango, that combines a proven analytical performance mod-
eling language, Aspen, with the massively parallel HPC net-
work modeling capabilities of the CODES framework. Our
models are compact, parameterized and representative of
real applications with computation events. They are not
resource intensive to create and are portable across simula-
tor environments. Specifically, we make the following two
contributions in this paper:

• Comparison of the Aspen-generated network commu-
nication patterns for the LULESH miniapp with real
LULESH application network communications via traces
that are run through the CODES packet-level net-
work simulation framework. Durango shows identi-
cal agreement with the real application trace data for
key network performance statistics. During our valida-
tion of Durango’s generated communication model of
LULESH, we found that the original LULESH miniapp
code had a latent bug where the MPI_Waitall opera-
tion was used incorrectly. This finding underscores the
potential need for a tool such as Durango, beyond its
benefits for flexible workload generation and modeling.

• A scaling study of Durango’s direct integration ap-
proach, which links Aspen into CODES as part of the
running network simulation model. Here, Aspen gen-
erates the application-level computation timing events
as part of an overall discrete-event system model, which
in turn drive the start of a network communication
phase. Performance results show that Durango’s per-
formance scales well when executing both torus and
dragonfly network models on upto 4K Blue Gene/Q
nodes using 32K MPI ranks and avoids the overheads
and complexities associated with extreme-scale trace
files.

2. Durango OVERVIEW
To motivate Durango, we refer to Figure 1, which illus-

trates the multiple workflows for generating a simulation
workload. In this paper, we consider four scenarios when
capturing the characteristics of the application to be simu-
lated. In the first scenario, we simply execute the applica-
tion, capturing the communication events, and transferring
execution control between the application and simulation as

appropriate (path 1-2-3-9 in Figure 1). The application is
built as it normally would be, but the communication events
are intercepted by the simulator and then simulated on the
theoretical network. This method is relatively straightfor-
ward and easy to perform, but it has the disadvantage that
it uses considerable resources in terms of execution time and
memory.

In the second scenario, we use a tracing tool, such as
DUMPI, to capture an event trace of all the communicat-
ing tasks and communication events in the application. This
trace is digested by the simulator (path 1-4-5-3-9 in Figure 1)
and the trace information is typically stored in a huge file.
Moreover, all the parameters of the trace are fixed at cap-
ture time; that is, the architect cannot change the problem
size or the number of processors after the trace has been
created.

In the third scenario, we use synthetic communication pat-
terns as a proxy for the application communication patterns
(path 1-6-7-4-5-3-9 in Figure 1). In the fourth scenario, the
proxy trace generator is glued directly into the simulator
(path 1-6-8-2-3-9 in Figure 1). These last two approaches
are the focus of this paper and are combined into a system
we call Durango.

2.1 Aspen Overview
Aspen is a domain-specific language designed for analyti-

cal performance modeling [28, 31]. The models represented
in Aspen comprise application models and abstract machine
models. The machine models describe the hierarchy of a
machine as well as speeds and feeds of its components for
processing computation and communication. Application
models contain descriptions of resource usage of an algo-
rithm (such as the computation and communication require-
ments) and control flow (iteration, sequential and parallel
dependencies, and kernel nesting).

The COMPASS framework described in [17] generates a
parameterizable performance model from a target applica-
tion’s source code using OpenARC [18] for automated static
analysis and then evaluates this model using various perfor-
mance prediction techniques available in Aspen. Prior to
using OpenARC, a small amount of manual annotation is
required in order to specify regions of interest and declare
parameters to be directly exposed in the generated Aspen
application model. The Aspen control flow walker can dy-
namically instantiate values of parameters that cannot be
determined statically. Generation of applications models
for the LULESH proxy application and the matrix multi-
plication kernel used in the Durango research is described
and validation of the Aspen resource usage and runtime
predictions with measurements on a real system is given
in [18]. Aspen currently combines a the throughput-based
node performance model based on the Roofline model [32]
with a simple latency plus bandwidth communication model,
where computation and communication can be overlapped
to a specified degree. Part of the motivation of the Durango
research is to achieve more accurate communication model-
ing than is possible using Aspen’s analytical methods.

Aspen, as an analytical tool, was initially designed to com-
pute symbolic results for analysis queries, such as the num-
ber of floating-point operations at a given problem size or
the performance of a kernel as a function of bus bandwidth.
However, the expansion of Aspen’s capabilities has allowed
for more complex uses; while an Aspen model is not source
code and cannot be executed per se, the representation of a
control flow is sufficiently rich to allow Aspen-based tools to
traverse an application model with the same control flow as
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Figure 1: Durango overview.

with the original application. We build this new capability
to provide synthetic communication trace generation along
with direct integration in Durango.

2.2 Durango Approach
In contrast to the first two scenarios described above, our

new approach allows the architect to create a parameterized
model of an application, and then instantiate the application
with specific parameters at simulation time. The potential
benefit of this approach is multifaceted. First, the model is
malleable: the user can easily change the application and
architecture parameters. In our approach, a model can be
instantiated for 16 MPI tasks as well as 1M MPI tasks. Sec-
ond, the models are compact, typically being only a dozen
lines for miniapplications and up to a few hundred lines for
real applications. Third, the Durango models include com-
putational and I/O events in addition to the communication
events so that computation and I/O demands can change in
concert with communication parameters. This approach has
multiple benefits: the synthetic workload can be generated
dynamically as necessary with the required architecture and
application parameters; the description is compact; and the
Aspen model can be as detailed or as sparse as required,
including computation, communication, I/O, and other im-
portant events.

More specifically, Durango requires that the user create a
parameterized Aspen model (6) of the application (1) and
then use the Aspen model to create a synthetic workload,
either by generating a compatible trace directly (7) or by
generating a synthetic MPI application (8) that can then be
traced (4-5-3-9 in Figure 1) or directly included in the simu-
lation executable that avoids the need to perform expensive
read operations of large trace datasets.

2.3 Representing Communication in Aspen
Resource descriptions in Aspen are user-defined. There

are common conventions such as flops, loads, and stores
for floating point operations and memory traffic, but these
must merely match what is defined in the abstract machine
model for Aspen to be able to return predictive costs such
as runtimes and power consumption.

A commonly used resource for MPI communication is
messages, but this results in a simplistic mapping. Ex-
tensions via traits enable more expressive message passing

patterns. For example, a trait description such as “as posi-
tive x” can direct an Aspen-based tool to generate MPI calls
if given a regular processor decomposition. However, these
trait descriptions are low-level, however, and require signifi-
cant effort from modelers to achieve communication patterns
like 3D nearest-neighbor; for example, requiring up to 26
separate message resource calls to generate message traffic
for each neighboring processor.

Listing 1: Example Aspen model with communica-
tion

1 model example
2 {
3 param nelem = 23
4 param wordsize = 8
5

6 kernel main
7 {
8 execute{flops [8* nelem ^3] from Domain as
9 simd}

10 execute{comm [1] of size [word] as allreduce ,
11 min}
12 execute{comm [nelem] of size [3* word] as nn3d ,
13 face}
14 }
15 }

Instead, we created a new resource convention, comm, that
represents communication patterns at a more semantic level.
An abstract machine model can still easily interpret these
in the same manner as the simpler message construct for
the purposes of determining costs, but we are now free to
interpret this new comm resource at a higher level in an Aspen
tool in order to generate synthetic patterns for executables
and traces.

Listing 1 shows an example Aspen application model us-
ing this new comm resource. Note how our new Aspen comm
resource corresponds to popular synthetic communication
patterns such as nearest-neighbor but can be customized
for application kernels as well. In particular, the pattern is
listed in the traits for the resource, and any options are
listed as additional traits. For example, line 10 has the
allreduce collective pattern with a min operation, and these
are represented in the traits as as allreduce, min. Com-
bined with the quantity and size, that resource description
is sufficient to generate a synthetic MPI call. Line 12 has



the nearest-neighbor 3D point-to-point pattern (nn3d) for
a domain size of nelelm with three double-precision fields
(3*word) and communication only along the six faces of each
domain (face).

2.4 Synthetic Program Execution
Aspen models are not designed to be “executed” per se

but have control flow such as iteration loops, parallel maps,
and kernel invocations. This control flow information was
sufficient for us to create a “walker” tool that uses the Aspen
library to traverse application models in control flow order,
as if they are executable programs.

The tool we created supports two major types of traversal:
implicit and explicit. The difference typically manifests in
control structures such as iteration. For example, if kernel
K is called from within an iteration control with count 7,
the explicit traversal will descend into the kernel call seven
times, while the implicit traversal will descend into the ker-
nel call only once but knows that it is executing with mul-
tiplicity seven with a sequential dependence.

Some types of analyses are amenable to implicit traver-
sal. For counting floating-point operations, we can typically
count how many operations are in kernel K in our exam-
ple above and multiply by seven. This is not possible in
all cases, however, for example, if floating point operation
counts vary stochastically, we must use explicit traversal and
sample values at each iteration. In the case of synthetic
trace generation, both implicit and explicit traversal have
their place.

In typical analyses, implicit traveral will be faster because
it performs less analysis and accumulates results in bulk to
provide the correct answer. In the context of generating a
synthetic MPI executable, in the implicit mode we can out-
put a C for loop containing the appropriate MPI calls, while
the explicit mode would require generating many C copies of
the same function calls. If Aspen were to hook up directly
to a simulator, we would, by necessity, switch to explicit
traversal because Aspen would need to feed the simulator
every MPI call generated by the synthetic program.

Listing 2: Aspen model with control flow and com-
munication.

1 model mpitest {
2 kernel main {
3 iterate [10] {
4 execute { comm [2] of size [word] as
5 allreduce , min }
6 }
7 }
8 }

2.5 Durango-Instantiated Executable
Our first option for generating a synthetic workload is to

instantiate an MPI-based source code file that captures the
parameters and patterns of the application via the Aspen
model. Listing 2 shows an example of a simple Aspen model
with an iteration loop along with a single communication
pattern — in this case, an Allreduce. Listing 3 shows the
output code (minus boilerplate) for this small Aspen model.
Note that this output was captured in implicit mode; in ex-
plicit mode we would get ten copies of the body of the for
loop, instead of a for loop with a count of ten. After gener-
ating the source code instantiating the model’s control flow
and communication patterns, we can compile and execute
it, optionally capturing a trace for study as output from the

Durango tool.

Listing 3: Source generated by model in Listing 2
using implicit traversal.

1 for (int loopctr =0; loopctr <10; loopctr ++)
2 {
3 int nwords =2;
4 std::vector <float > sendvec(nwords , rank *1.0f);
5 std::vector <float > recvvec(nwords );
6 MPI_Allreduce (&( sendvec [0]), &( recvvec [0]),
7 nwords , MPI_FLOAT ,MPI_MIN ,
8 MPI_COMM_WORLD );
9 }

2.6 CODES: An Extreme-Scale Systems Mod-
eling and Simulation Framework

To demonstrate our new Durango’s methodology and func-
tionality, we have integrated Durango with a popular mas-
sively parallel simulation system for interconnection net-
works, CODES/ROSS.

CODES enables the design-space exploration of HPC net-
works and storage systems with the help of scalable discrete-
event simulations of interconnection networks and storage
systems. CODES uses ROSS as its underlying parallel discrete-
event simulation framework, which enables efficient and scal-
able network models thanks to the optimistic event schedul-
ing capability of ROSS [22]. The core object within a ROSS
model is a logical process (LP), which models some distinct
component of a network such as a terminal or router. Sim-
ulation time is advanced by LPs exchanging time-stamped
event messages. The optimistic parallel synchronization ap-
proach used by ROSS guarantees that events are processed
in time stamp order.

CODES supports high-fidelity network models for drag-
onfly, torus, and SlimFly interconnect topologies. It uses
an abstraction layer on top of the network models that al-
lows users to conveniently plugin multiple network topolo-
gies while making minimal changes to their simulation code.
The network topologies are simulated at a packet-level de-
tail with congestion control being modeled through a credit-
based flow control methodology on the virtual channels. The
dragonfly network model in CODES is built on the high-
radix, low-cost network configuration proposed by Kim et
al. [15, 16]. It models four forms of routing algorithms:
minimal, non-minimal, adaptive, and progressive adaptive
routings. Multiple virtual channels are used for deadlock
avoidance with different routing algorithms. The dragonfly
model has been validated against the Booksim interconnect
simulator using synthetic traffic patterns [21]. The torus
network model is inspired by the Blue Gene architecture.
It uses a bubble-escape virtual channel for deadlock avoid-
ance with deterministic dimension-order routing. Validation
of the torus model has been carried out against the Blue
Gene/P and Blue Gene/Q architectures [20]. The SlimFly
network model is based on another high-radix network topol-
ogy proposed by Besta and Hoefler to reduce the network
cost and diameter [6]. The CODES SlimFly simulation re-
sults were validated against the simulator by Besta and Hoe-
fler.

The CODES network models report detailed statistics about
network performance for each simulated network node and
router. Using metrics such as the average number of hops
traversed, average packet latency, data transmitted, and
number of packets completed. Detailed statistics are re-
ported at the network link level, including the amount of



data transmitted at each network link and the time that the
link gets saturated during the simulation. These metrics can
be used to get detailed insight into the network performance
with different workloads.

To replay the MPI operations on CODES network mod-
els, one needs a mechanism that avoids transmitting back
to back MPI send messages on the network. Figure 2 shows
how the MPI simulation layer interacts with the CODES
network abstraction layer to replay the workload operations
on top of the simulated networks. The MPI simulation layer
in CODES digests the MPI operations from the workloads
and simulates them on top of the network models. It tracks
the queues of MPI sends and receives, matches sends with
the receives, and simulates MPI wait and ait-all operations.
This functionality is vital for maintaining the correct causal-
ity order of MPI operations coming from the traces.

2.7 Durango Direct Integration: Aspen with
CODES

At the core of the Durango direct integration approach is
a CODES discrete-event model that drives a network sim-
ulation component, coupled to an Aspen-based runtime es-
timator for parallel applications. The model defines Aspen
Server Logical Processes (Aspen LPs), which are the enti-
ties in the simulation responsible for driving the creation of
network traffic and for performing Aspen-related computa-
tions. Each Aspen LP is paired to a corresponding CODES
network terminal LP to facilitate communication with the
network layer within the CODES model. The CODES net-
work LPs are generated and organized based on the network
topology chosen for the current runtime estimation. When
Aspen is called through the Aspen Server LPs, the estima-
tion parameters are passed from the primary configuration
file for Durango. In return, Aspen returns the runtime es-
timate based on the application and the machine details
specified by the configuration file.

Listing 4: Aspen LP kickoff event handler.
1 static void handle_kickoff_event(
2 aspen_svr_state * ns,
3 tw_bf * b,
4 aspen_svr_msg * m,
5 tw_lp * lp)
6 {
7 int dest_id;
8 aspen_svr_msg m_local;
9 aspen_svr_msg m_remote;

10

11 m_local.aspen_svr_event_type = LOCAL;
12 m_local.src = lp->gid;
13 m_remote.aspen_svr_event_type = REQ;
14 m_remote.src = lp->gid;
15

16 /* record when transfers started
17 // on this server */
18 ns->start_ts = tw_now(lp);
19

20 dest_id = get_next_server(lp);
21

22 model_net_event(net_id , "test",
23 dest_id , payload_sz , 0,
24 sizeof(aspen_svr_msg),
25 (const void *)& m_remote ,
26 sizeof(aspen_svr_msg),
27 (const void *)& m_local , lp);
28 ns->msg_sent_count ++;
29 }

Under the current direct integration mode, Durango simu-

lates a given application in two-step rounds of network simu-
lation and computation runtime estimation, handled by the
internal CODES model and Aspen respectively.

Figure 3 illustrates the runtime of a network-computation
round in greater detail. First a CODES network simulation
is executed, and then the 0th Aspen Server LP, labeled “As-
pen Master,” reduces and processes all network data. Once
the data have been reduced, the Master LP passes control
of the simulation to the Aspen runtime in order to estimate
the computation cost for the current round. Aspen returns
a runtime estimate, and then returns control to the Master
LP, which resumes subsequent simulator rounds by sending
network restart events to all other Aspen LPs.

Listing 5: Aspen computation event handler.
1 static void handle_computation_event(
2 aspen_svr_state * ns,
3 tw_bf * b,
4 aspen_svr_msg * m,
5 tw_lp * lp)
6 {
7 // Compute overall network time elapsed:
8 delta += end_global - start_global;
9

10 /* Call ASPEN framework to estimate
11 // computation cost: */
12 delta += runtimeCalc(Aspen_App_Path[
13 roundsExecuted - computationRollbacks],
14 Aspen_Mach_Path ,
15 Aspen_Socket[roundsExecuted -
16 computationRollbacks ]);
17

18 // Save totalRuntime and then update it:
19 m->end_ts = totalRuntime;
20 totalRuntime += delta;
21

22 // Increment number of rounds executed:
23 roundsExecuted ++;
24 .
25 .
26 .
27 }

Each CODES network simulation phase begins with“kick-
off” events sent by the Master LP to all Aspen Server LPs,
itself included. The code for handling kickoff events is shown
in Listing 4. In response to kickoff events, Aspen LPs record
the current simulation time and use get_next_server(lp),
a mapping function that uses the underlying CODES API
for organizing the logical processes to retrieve the identity of
the LP that they will communicate with for the duration of
the network-computation round. Depending on the network
traffic type specified in the configuration file, get_next_ser-
ver(lp) returns a different ID. If nearest neighbor is speci-
fied, for example, then the next logical process ID that cor-
responds to an Aspen LP is returned. This is an important
distinction, since some of the logical processes in the simula-
tion serve other purposes, such as network terminals, rather
than Aspen Servers. In the case of a random network traffic
pattern, a random identity corresponding to any other As-
pen LP is returned. This means that multiple Aspen LPs
may communicate with one Aspen LP for the duration of
the round, but it does not mean that they may communicate
with themselves. The kickoff handler ends after the CODES
API is used with model_net_event(...) to send a “ping”
to the LP whose ID was returned by get_next_server(lp).

Upon receipt of a “ping” request, Aspen LPs respond with
an acknowledgment event message to the sender. For every
“ping” and “ack” event that an Aspen LP receives, counters
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Figure 3: Durango hybrid runtime.

are incremented and saved in the logical process state. The
request-acknowledgment interchange continues until the As-
pen LP that initiated the exchange has sent the configured
number of requests and received the correct number of ac-
knowledgments. The Aspen Server that initiated the ex-
change records the simulation timestamp at which network
communication ended with its counterpart.

With the first half of the network-computation round com-
pleted, the Aspen LPs cease driving network communica-
tions and send their start and end timestamps to the 0th
Aspen LP. Note that the Aspen LPs could simply send their
own total elapsed network communication time instead of
the separate start and end values; however, then the overall
longest communication time might not be accurately mea-

sured if the LP with the longest communication time be-
gins simulation before some other LPs but also ends before
other LPs that began their network conversations later. In
all cases, the total network time elapsed is the difference
between the globally earliest and globally latest start and
end timestamps, respectively. As a result, the 0th LP is
responsible for finding the longest time spent in the net-
work phase overall and therefore keeps track only of the
earliest and latest values it receives from all of the Aspen
LPs, itself included. This process is handled by the han-
dle_data_event(...) handler. Once all timestamps have
been received, the Master LP sends an “Aspen Computa-
tion” event to itself. The “Aspen Computation” event han-
dler performs a function call to the Aspen simulation en-
gine with paths to the application model and machine model
sourced from the Durango configuration file. In Listing 5, an
excerpt of the computation event handler, the total network
runtime, is calculated. Then a call to Aspen is made, pass-
ing the parameters of the application and machine model as
well as which compute socket to run on. The computation
runtime is returned and added to the global running counter,
marking the end of the network-computation round.

If only one round has been configured in the Durango con-
figuration file, then the simulation will terminate with only
one iteration of CODES network simulation and Aspen run-
time computation estimation. Otherwise, the Master LP
re-sends kickoff messages to each Aspen Server LP, signal-
ing the start of a fresh network-computation round. Upon
receiving the re-kickoff message, all Aspen Server LPs then
find a new LP with which to communicate and start the
next network simulation phase.

3. SYNTHETIC TRACE AND PERFORM-
ANCE EVALUATION

In this paper, we describe two series of experiments. The
first uses the LULESH miniapp and compares it with Du-
rango’s generated facsimile of its communication pattern.
For these experiments, a 64-way multicore system is used
with 64 GB of RAM and 2.2 TB of disk space. Here, the real
LULESH DUMPI trace for a 4x4x4 grid (64 MPI ranks) con-
figuration is compared with that of the Durango generator,
which also runs and creates a DUMPI trace. For the com-
parison, both DUMPI traces are run through the CODES
torus network simulator, which is configured with a torus
network topology in a 4x4x4 configuration.

In the second series of experiments, we demonstrate the
efficacy of our direct integration approach. Performance re-
sults are shown for Durango when a computational kernel
implemented in Aspen is linked into a executable network
model. For this series of experiments, both a torus and a



dragronfly network are used. All simulations are run in par-
allel on the “AMOS” IBM Blue Gene/Q supercomputer lo-
cated at the Center for Computational Innovations at Rens-
selaer.

3.1 Durango Generated vs. Real LULESH Re-
sults

Figure 4: LULESH vs. Durango: Average torus net-
work packet hop count as a function of the different
LULESH phases.

Figure 5: LULESH vs. Durango: Finished torus
network packet count as a function of the different
LULESH phases.

Figure 6: LULESH vs. Durango: Finished torus
network packet hop count as a function of the dif-
ferent LULESH phases.

Figure 7: LULESH vs. Durango: Total torus
network bytes sent as a function of the different
LULESH phases.

3.1.1 LULESH Proxy Application
LULESH [1, 13] is a scientific computing application that

performs explicit shock hydrodynamics calculations on an
unstructured grid. It has been ported to several program-
ming models. To explore modeling of the communication
behavior, we studied the parallel version of LULESH imple-
mented by using MPI for interprocess communication.

LULESH has a processor decomposition that is regular.
While the mesh elements are defined with explicit connec-
tivity allowing for unstructured elements other than hexa-
hedra, the implementation of communication between the
problem domains has a logical structure that allows nearest
neighbor communication along the three-dimensional mesh
i/j/k directions.

LULESH has three styles of communication:

(A) bidirectional nearest-neighbor communica-
tion across only faces;
(B) bidirectional nearest-neighbor communica-
tion across faces, edges, and corners and
(C) unidirectional communication across faces,
edges, and corners, from a lower-rank task to a
higher-rank task.

LULESH has four phases of communication, each con-
forming to one of these three styles. We label experiments
using a bit pattern representing which phase is active: “1”
for the first phase (style B), “2” for the second phase (style
A), “4” for the third phase (style B), and “8” for the fourth
phase (style C). This allows us to describe the behavior of
the full application with multiple phases active by summing
the bit patterns of every active phase. Because the first
communication phase in LULESH is used only for problem
initialization, we focused on the analysis of the other three
phases, which occur every time step. The analysis results
are labeled “2,” “4” and “8” for their respective LULESH
phases.

3.1.2 Experimental Results
In this first series of experiments, we compare the CODES

network output statistics for the Durango generated and the
real LULESH miniapp MPI communication traces. The key
network statistics are as follows:

• Average packet hop count: the total number of
hops traversals divided by the total number of packets
sent into the network



• Finished packets: the total number of packets that
reached their final destination

• Finished packet hop count: the total number of
hop traversals divided by the total number of packets
that reached their final destination

• Total bytes sent: total amount of data sent into the
network

These statistics avoid any measure of time either absolute
or relative such as an interarrival time. While such infor-
mation is important, it largely depends on the amount of
compute time between MPI messages and/or architectural
features of the underlying machine model. The four statis-
tics we use capture the communication behaviors that are
independent from computation.

In validating Durango’s generated LULESH communica-
tion patterns relative to the original LULESH miniapp code,
we discovered an incorrect use of the MPI_Waitall operation
by LULESH, whereas the Aspen-generated code was correct.
Specifically, the number of wait requests sent is hard coded
to 26 when only a small fraction (e.g., about 8) of the 26
available MPI_Isend and MPI_Irecv requests were used in
this specific scenario. This error resulted in the CODES
simulation prematurely terminating because of unmatched
requests within the MPI_Waitall, which is a correct behavior
for the simulator since it denotes a “bad” trace. Once pro-
vided the right number of active requests, the MPI_Waitall
trace events were correct, and the CODES simulator com-
pleted without error. This finding underscores the potential
need for a tool such as Durango beyond its benefits for flex-
ible workload generation and modeling.

With regards to the network results, Figure 4 shows the
average packet hop count as a function of different LULESH
phases. The average ranges from 1.0 in phase 2 to nearly
1.06 in phase 4. Across all the phases, we observe iden-
tical results between the Durango generated and the real
LULESH communication patterns.

Figures 5 and 6 show the number of finished packets and
hops as a function of LULESH phases. In Figure 5 the num-
ber of finished packets ranges between 272K and 320K pack-
ets; similarly, the finished hop counts are in the same range
because the hop count for the majority of LULESH packets
is a single hop away in the 3D torus network. Across all the
phases, we observe identical results the Durango finished
packets/hop count and the real LULESH finished packet-
s/hop count.

Figure 7 reports the total number of packets sent as a
function of LULESH phases. As before, we observe no differ-
ence between the Durango generator and the real LULESH
miniapp. The range in packets is 140MB for phase 2 up to
151MB for phases 4 and 8.

3.2 Evaluation of Durango Direct Integration
The Durango direct integration approach was executed on

AMOS, an IBM Blue Gene/Q supercomputer located at the
Rensselaer Polytechnic Institute Center for Computational
Innovation. AMOS has 5 racks, each with 1,024 nodes. Each
node contains 16 GB of DDR3 RAM and one IBM A2 pro-
cessor, clocked at 1.6 GHz with 16 compute cores and 64
hardware threads.

Across all tests, Durango was run using BG/Q node counts
ranging from 4 to 4096 nodes and 32 to 32,768 MPI ranks.
For the network simulation component, torus and dragon-
fly network models were configured with a nearest-neighbor
traffic pattern, and a custom Aspen machine model based

on the AMD processors was written for calculating runtimes
with a matrix multiplication kernel model. The torus net-
work is a 5D (85) topology yielding 32K nodes with each link
having 2 GB/sec bandwidth. The dragonfly network’s con-
figuration is taken from [20] and has 1.3M terminal nodes.

Unlike the previous test, Aspen is driving the compute
time between phases of nearest-neighbor communications.
The purpose of this performance study is to demonstrate
that the Aspen compute model does impede the parallel
network simulation. Future work on Durango will enable
the Aspen system model to drive both compute node timing
activity and network patterns at the same time.

3.2.1 Runtime Configuration
Configuration of Aspen when executed in this direct in-

tegration mode with the CODES parallel simulation frame-
work is accomplished through a primary and secondary con-
figuration file. The primary configuration file is used to spec-
ify the Aspen compute kernel and machine models that will
be utilized during each network-computation round. This
configuration file also allows per-round selection of the socket
on each node of the Aspen machine to be used to “run” the
compute kernel, as well as the number of rounds to be sim-
ulated. The number and size of the “ping” requests sent be-
tween Aspen Server logical processes are configured as well.
A sample primary configuration file is shown in part in List-
ing 6, where Durango has been configured to simulate two
rounds of matrix multiplication on an AMD-based cluster
using the CPU in the first round and the GPU in the sec-
ond round over the CODES-provided “SimpleNet” testing
topology. Note that in the primary configuration file, the
level of debug information can be adjusted as follows:

• Level 0: supresses all debug output

• Level 1: allows configuration details to be printed

• Level 2: allows runtime progress messages to be printed

Listing 6: Aspen parameter configuration excerpt.
1 ASPEN_PARAMS
2 {
3 debug_output ="1";
4 network_conf_file =" simplenet.conf";
5 network_traffic_pattern =" random ";
6 num_rounds ="2";
7 aspen_mach_path ="./ models/
8 machine/BigTestRig.aspen";
9 socket_choice000 =" amd_830 ";

10 socket_choice001 =" amd_HD5770 ";
11 aspen_app_path000 ="./ models/matmul/
12 matmul.aspen";
13 aspen_app_path001 ="./ models/matmul/
14 matmul.aspen";
15 }
16

17 server_pings
18 {
19 num_reqs ="128";
20 payload_sz ="1024";
21 }

The second configuration file used by Durango is included
in the simulator runtime by a parameter in the primary con-
figuration file, called network_conf_file. The parameters
in the network configuration file are directly passed on to
the underlying CODES-Net framework, and allow for net-
work topology and size settings to be adjusted. The net-
work configuration file also controls how logical processes



are organized in the simulator. Durango contributes the As-
pen Server LP. Required by the CODES framework are the
network-level “server” LPs and the chosen network topol-
ogy’s routing LPs. Listing 7 shows the basic network con-
figuration file for the SimpleNet network topology.
LPGROUPS contains the ASPEN_SERVERS subcategory, and

lists the classes and organization of the LPs in the simula-
tion. For the SimpleNet topology the only two LP types
needed are the CODES-level “modelnet simplenet” LPs and
the“server”LPs, which drive the overall Aspen-CODES sim-
ulation layer. The other two supported topologies, torus and
dragonfly, also require two CODES-level LPs to function.

Listing 7: Aspen SimpleNet network configuration.
1 LPGROUPS
2 {
3 # simplenet has a set of servers , each with
4 # point -to-point access to each other
5 ASPEN_SERVERS
6 {
7 # required: number of times to repeat
8 the following key -value pairs
9 repetitions ="4096";

10 # LP types
11 server ="1";
12 modelnet_simplenet ="1";
13 }
14 }
15 # Network Params:
16 PARAMS
17 {
18 # ROSS -specific parmeters:
19 # - message_size:
20 message_size ="340";
21 pe_mem_factor ="512";
22 # model -net -specific parameters:
23 # - individual packet sizes for network
24 # operations where each "packet" is
25 # represented by an event
26 # - independent of underlying network being
27 # used
28 packet_size ="512";
29 # - order that network types will be presented
30 # to the user in
31 # model_net_set_params. In this example ,
32 # we’re only using a single
33 # network topology
34 modelnet_order =( "simplenet" );
35 # - packet scheduling algorithm
36 modelnet_scheduler ="fcfs";
37 # - simplenet -specific parameters
38 net_startup_ns ="1.5";
39 net_bw_mbps ="20000";
40 }

PARAMS includes topology-specific configuration details; for
the excerpt shown here include the packet size, network
bandwidth, latency, and packet scheduling algorithm. The
dragonfly network topology adds to this list the number of
routers in each subgroup, the global and local channel band-
widths, and several other topology-specific parameters. The
torus topology also adds several unique parameters to this
section, including the torus dimensionality (and correspond-
ing dimension sizes).

3.2.2 Performance Results

Figure 8: Durango in direct integration mode with
32K node torus network and Aspen compute node
generator for 32 to 2,048 MPI ranks.

Figure 9: Durango in direct integration mode with
32K node torus network and Aspen compute node
generator for 1K to 16K MPI ranks.

Figure 8 shows strong-scaling results for Durango when
configured with a 32K node torus network and executed us-
ing 32 to 2048 MPI ranks across a varing number of ranks per
compute node on the Blue Gene/Q supercomputer. Here,
the execution time ranges from 24,000 seconds down to just
over 1,000 seconds. This implies an overall worst-case to
best case speedup of 24x using just 16x the hardware (e.g.,
4 nodes to 64 nodes). This superlinear performance is at-
tributed to performance gains because of a smaller memory
“working set” which yields higher cache hit rates as the core
counts increase. Similar performance gains were reported by
Barnes et al. [5]. Parallel simulation efficiency ranges from
a peak of 92% on 4 nodes with 32 ranks to a low of 61% on
64 nodes using 2048 ranks. This is to be expected because
of the likelihood of out-of-order event computations grows
as the number of nodes increase.

The out-of-order event computations become more prob-
lematic at larger MPI rank counts, as shown Figure 9. Here,



Figure 10: Durango in direct integration mode with
1.3M node dragonfly network and Aspen compute
node generator for 1K to 32K MPI ranks.

the same 32K node torus network configured with an As-
pen LP for determining the compute phase timing for the
matrix-multiplication kernel is being scaled from 1K to 16K
MPI ranks and 128 to 512 Blue Gene/Q compute nodes.
The worst-case efficiency of -314% is report when using 512
nodes and 16K MPI ranks. This implies that nearly three
events are being rolled back for each forward event per the
efficiency definition used in [5]. Clearly, the simulation has
become overly speculative. The fastest execution case is
with 256 nodes and 4,096 MPI ranks and completes in 726
seconds.

If we increase the network simulation workload by using
a much larger network, we observe much better Durango
performance, as shown in Figure 10. Here, a 1.3M node
dragonfly network is configured with the Aspen computation
timing event generation. The parallel simulation run with
128 nodes and 1K MPI ranks completes in 24,000 seconds
while the run with 4,096 node and 32K MPI ranks completes
in just 2200 seconds. The observed performance is nearly a
11x speedup for 32x the hardware, which is in line with
results reported in previous dragonfly network simulation
studies [22].

Overall, the integration of Aspen’s code timing event gen-
eration does not impact the overall Durango performance.
Also, we avoid the performance penalty of reading in large,
memory-intensive traces datasets.

4. RELATED WORK
Durango touches on many research areas but especially

tracing tools and systems simulators.
Tracing Tools: Tracing is an important and traditional

technique for capturing communication, memory [29], and
instruction events. Relevant here are tracing tools that
capture communication events in large scale systems in-
cluding DUMPI [25], which is part of the Structural Sim-
ulation Toolkit (SST). DUMPI has been used to create a
trace database for the key miniapps used in performance
benchmarking of network design for the DOE Design For-
ward and Fast Forward programs. In addition to DUMPI
traces, Tracer [2] provides an alternative approach to re-
playing trace-based communication workloads within the
CODES network modeling and simulation framework.

ScalaTrace is an MPI tracing toolset that uses intra- and
internode lossless compression techniques to produce near-
constant-size communication traces regardless of the number
of nodes while, preserving communication structure informa-
tion [23]. Recent enhancements include MPI-IO and POSIX
I/O tracing and improved extrapolation of MPI, MPI-IO,
and POSIX I/O traces. Synthetic benchmarks that reflect
application behavior can be generated from the compressed
tracefiles in different ways: (1) by generating from the trace-
file a high-level abstract conceptual pseudocode from which
a specific implementation (e.g,. C+MPI) can be gener-
ated [34] or (2) by directly generating the C+MPI synthetic
benchmark from the trace using ScalaBenchGen [33].

Compiler-Based Approaches: A compiler framework
that can identify communication patterns for MPI-based
parallel applications is described in [27]. The compiler uses
a communication pattern representation scheme that cap-
tures the properties of communication patterns and allows
manipulations of these patterns. Communication phases can
be detected and logically separated within the application.
The predicted LBMHD, CG and MG communication pat-
terns were verified by comparing with application trace data.

HPC System Simulators: Dimemas [24, 26], a perfor-
mance analysis tool for MPI applications, is used in conjunc-
tion with Venus, an Omnest-based network simulator [30] to
perform trace-driven simulations [19, 8]. Initial results are
shown at a scale of up to 512 cores on the Blue Gene/P
platform.

BigSim [35] is a parallel discrete-event simulation frame-
work built on the POSE PDES engine [2]. It has been used
to explore intelligent topology-aware job mappings for the
PERSC architecture [35, 7]. BigSim also can generate traces
by emulating application behavior on architectures that do
not yet exist. The generated application traces can then
be replayed on network simulations for performance pre-
diction. However, the POSE PDES engine imposes perfor-
mance penalties, which makes it difficult to scale the simu-
lation to large core counts. A recent study by the BigSim
and CODES team demonstrates that CODES is an order of
magnitude faster than BigSim [2].

Booksim [9] is a serial, cycle-accurate interconnection net-
work simulation framework that supports multiple network
topologies such as torus, fat tree, and dragonfly. Kim et al.
used Booksim to propose the dragonfly network topology on
a scale of 1,056 network nodes [15, 16]. Booksim supports a
detailed router model for the networks along with detailed
routing algorithms for each topology. A modified version of
Booksim was also used to simulate the performance of a Slim
Fly network topology [6, 14].

The WARwick Performance Prediction Toolkit (WARPP)
[11] uses the following modeling approach: (1) manual or
automated source code analysis to identify basic blocks and
MPI calls, (2) machine benchmarking on the target machine
to measure runtime for basic blocks and to do MPI bench-
marking, and (3) input of the application model and the
benchmarking results to a discrete event simulator. Cur-
rently, only the 2008 version of the simulation engine, which
is written in Java with its accompanying documentation, is
available.

POEMS [3] is an end-to-end performance analysis frame-
work for HPC applications. This includes the modeling of
the application software, runtime and operating software,
and hardware architecture. Central to this framework is the
POEMS Specification Language compiler that generates an
end-to-end system automatically from a system specifica-



tion. Unlike POEMS, Durango enables the prediction of an
application’s computational and network performance on fu-
ture or hypothetical hardware configurations. This feature
of Durango is attributed to structural analytic modeling ap-
proach of Aspen on the application calculation side, and
packet-level modeling approach of CODES on the network
side. In contrast, POEMS relies on a simple latency/band-
width hardware network model that is unable to track the
detailed congestion events that can happen across different
network topologies.

The Structural Simulation Toolkit (SST) is a parallel discrete-
event simulation framework that uses a conservative syn-
chronization approach to model a number of components
such as network, processors and memory [12, 25]. Detailed
SST models can run at small scale with a few network nodes.
Large-scale network simulations use a low fidelity model buit
in the SST macro layer. Here, the DUMPI trace library is
used to capture the communication behavior of MPI appli-
cations.

The most recent related results are in [4]. Here, a new
Python-based HPC network modeling framework that is built
on the Simian parallel discrete-event engine demonstrates
accurate performance predication of a Cray 3D torus net-
work across a number of MPI application traces. A network
model using 156K MPI rank trace as input is shown to ef-
ficently run in parallel on up to 3K AMD Opteron cores.
Unlike Durango, this approach currently does not appear to
include models for predicting the computational overhead
associated with the scientific applications.

5. CONCLUSIONS
In this paper, we introduce a new performance analysis

tool called Durango that integrates the analytical perfor-
mance modeling capabilities of the Aspen domain specific
language with the efficient, massively parallel network sim-
ulation capabilities of CODES. Aspen has been extended to
enable communication pattern specification. The efficacy of
Durango is demonstrated as a new approach to the perfor-
mance modeling of extreme-scale systems in two ways:

• Comparing the Aspen generated communication pat-
terns with real application network communications
via traces that are run through the CODES packet-
level network simulation framework. Durango shows
strong agreement with the real application trace data
for key network performance statistics.

• Performing a scaling study of Durango’s direct integra-
tion approach that links Aspen with CODES as part
of the running network simulation model. Here, As-
pen generates the application-level computation tim-
ing events, which in turn drive the start of a network
communication phase. Results show that Durango’s
performance scales well when executing both torus and
dragonfly network models on up to 4K Blue Gene/Q
nodes using 32K MPI ranks.

We plan to extend Durango’s capabilities by enabling As-
pen to drive both the compute kernel timing and the net-
work communication patterns for key supercomputing appli-
cations. This extension will enable end-to-end performance
prediction capabilities for current and future extreme-scale
systems.
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